groepentheorie

WAT IS EEN GROEP

Een van mijn favoriete vakken die me op de universiteit werden aangeleerd moet groepentheorie zijn. Het vak bestudeerd (de naam zegt het zelf) groepen. Geen sport of muziekgroepen maar speciale wiskundige groepen. Een ‘wiskundige’ groep is zeer snel en eenvoudig uit te leggen.

Nee, het is niet een clubje wiskundige nerds die in een donkere kamer nieuwe theorieën bedenken en beurtelings bewijzen oplossen. Een groep in de wiskunde bestaat voornamelijk uit 2 delen, namelijk een verzameling met elementen én een bewerking (met bewerking bedoel ik bijvoorbeeld +, – , : of x ). Neem als voorbeeld anders het volgende, als verzameling nemen we alle even getallen 0,2,4,6,8,10,12,14,… en als bewerking nemen we gewoon +, de optelling.

Er moet echter wel aan enkele eigenschappen voldaan zijn vooraleer we deze twee dingen samen nu echt een groep mogen noemen. Ik zal niet in detail treden over alle eigenschappen maar er zijn er twee die ik heel makkelijk en snel duidelijk kan maken. De eerste eigenschap zegt dat als we de gekozen bewerking uitvoeren op de gekozen verzameling dat de uitkomst weer in de verzameling moet zitten. Dit klinkt wat lastiger dan het is, misschien kan ik het makkelijker aantonen met ons voorbeeld. De gekozen bewerking, in ons voorbeeld is de optelling. We voeren deze uit op twee getallen van de gekozen verzameling, in ons geval dus twee even getallen. 8 + 10, of 6 + 4, of 14 + 12,… we merken al snel dat de uitkomst steeds weer een even getal zal zijn en dus weer in de gekozen verzameling zit. Ons voorbeeld voldoet dus al aan de eerste eigenschap.

De tweede makkelijk te verduidelijken eigenschap is dat er steeds een neutraal element moet zijn voor de bewerking. Hiermee bedoel ik dat er een element in de gekozen verzameling moet zitten zodat als we er de gekozen bewerking op uitvoeren er eigenlijk niets gebeurt. In ons geval is dat element: “0”, namelijk 2 + 0 = 2, of 14 + 0 = 14, 188 + 0 = 188,….. het maakt niet uit welk even getal we optellen met 0, we bekomen steeds weer het originele getal. Daarom is in onze voorbeeld groep het getal 0 het neutrale element. Stel dat we als bewerking de vermenigvuldiging hadden genomen, kan je dan achterhalen wat het neutrale element is?…..

Zo gelden er nog enkele kleine eigenschappen waaraan een groep moet voldoen maar ik zal hier zoals gezegd niet over uitwijken.

WAAR GEBRUIKEN WE GROEPEN

Groepen kunnen voor enorm veel toepassingen gebruikt worden. In de wiskunde zelf worden deze groepen echt overal gebruikt (daarom dat dit een eerstejaars vak is op de universiteit). Omdat het vak zo bestudeerd en toegepast is word het zelfs vaak opgedeeld in verschillende studies over de verschillende soorten groepen die er bestaan!

Maar als je meer geïnteresseerd bent in chemie is de kans zeer groot dat je in je loopbaan groepen zal tegenkomen. De vele chemische stoffen en materialen kunnen namelijk worden ingedeeld volgens hun symmetrie (we spreken van symmetrie als een voorwerp als twee helften van het voorwerp in een bepaalde zin elkaars spiegelbeeld zijn). En deze symmetrieën (spiegelbeelden) kunnen we beschrijven met groepen die we in de wiskunde bestuderen! Ook voor leerlingen die meer in fysica geïnteresseerd zijn komen voor dezelfde reden groepen tegen. In de fysica bestuderen we onder andere natuurlijke krachten en de natuur houdt van symmetrie…

Voor de puzzelaars onder ons bestaat er ook een enorm bekende toepassingen, de Rubic’s cube. Zo een kubus is eigenlijk een mooi voorbeeld van en groep. Grofweg kunnen we als verzameling van elementen, alle mogelijke bewegingen die we met de kubus kunnen doen (bv. een stuk van de kubus draaien, of de kubus helemaal op zijn kop zetten), en als bewerking tussen twee bewegingen nemen we simpelweg de combinatie van de bewegingen. We kunnen nu al de wiskunde die we leren tijdens het vak groepentheorie gebruiken op de rubic’s cube en hem zo met behulp van wiskunde oplossen.

DAAROM WISKUNDE

 

Giedts T.

Advertisements

1 Comment

Filed under Universitaire wiskunde voor dummies

One response to “groepentheorie

  1. Pingback: golven en cocktailfeestjes | waaromwiskunde

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s