een doos, enkele kogels en veeltermen…

Wiskundigen zijn volgens vele, mensen die het graag moeilijk en lastig maken terwijl er eigenlijk zelfs geen probleem is… Maar hoe vaker je aan wiskunde doet, hoe meer je zal merken dat wiskundigen juist lui zijn en het zichzelf zo makkelijk mogelijk trachten te maken. Dit doen we door moeilijke problemen die lastig op te lossen zijn, op te delen in kleinere meer handelbare taken. Een perfect voorbeeld hiervan zijn de veeltermen.
Laten we eerst enkele veel gebruikte “eenvoudigere toepassingen” zien.
200195865-001
Een belangrijke parameter van een veelterm is zijn graad, ofwel, welke is de hoogst macht van de onbekende…
x² + 3x – 5 is een veelterm van 2de graad want x wordt maximaal tot de tweede macht verhoffen. Zo is x³-5x een veelterm van derde graad, x15+x7-4x6 + π heeft graad 15, enz…
De meesten zullen al wel in contact gekomen zijn met 2de graads vergelijkingen dus laten we daar een veelvoorkomend applicatie van bekijken.

De functie die we gebruiken in verband met afstand, snelheid en acceleratie (versnelling) is een tweede graads vergelijking. In deze (zie onderstaande functie) veelterm van graad 2 is t de onbekende. X0 is het beginpunt, v0 is de beginsnelheid en a is de versnelling. Met deze handige functie kunnen we in fysica en mechanica een enorm stuk ver geraken. Beginnende met eenvoudige oefeningen zoals als een trein Antwerpen (= X0) voorbijrijdt  tegen 100km/h (= v0) en hij versnelt gemiddeld met 1km/h² (= a0), hoever is deze dan na een half uur (= t), of na 2 uur…?
Het lijkt een banale toepassing maar sla de krant maar eens open en je staat verstelt hoeveel klachten de NMBS ontvangt wegens treinen die te laat zijn!
speed
Boeiender kan je het maken wanneer je weet dat ook versnelling en snelheid van bijvoorbeeld kogels hiermee berekend worden, waardoor we dan weer de afstand van schutter tot slachtoffer kunnen vinden en zo de dader kunnen opsporen. Maar dit geldt ook voor raketten, en dat mag je zelfs zeer ruim interpreteren tot en met maanraketten en dergelijke. Inderdaad, vandaag leer jij op school wat astronauten op de maan helpt brengen.
imagesCAB74OY7
Een veelterm van graad 3 komt van pas als we in drie dimensies gaan werken (merk op dat vorige toepassingen zich in 2 dimensies afspelen en dus een veelterm van graad 2 hebben). Neem bijvoorbeeld het eenvoudige voorbeeld van een doos die je wil maken. Je weet dat de doos 2 cm hoger moet zijn dan ze breed is, en nog eens 2 centimeter meer in de diepte. Het volume van je doos moet 48 worden… hoe breed is je doos? … wel het volume is breedte x hoogte x diepte. Stel dat B de breedte is dan hebben we: B x (B+2) x (B+4) = B³ + 6B² + 4B = 48   Voila een veelterm van graad 3. We hadden een vrij makkelijke vraag (gegeven het volume wat is de lengte) en toch komen we al snel aan een veelterm van graad 3.  Ook dit probleem kan je weer uitbreiden, denk maar aan gelijk welk probleem waar volumes in voorkomen: wegpompen van water, opslaan van grote hoeveelheden in opslagplaatsen, vullen van brandstoftanks (ja, ook die van raketten),…
IMG_9172_JPG
Waarom wiskundige zo graag met deze veeltermen werken is omdat ze enkel de basisoperaties omvatten, plus maal en machten. Maar natuurlijk zullen we problemen tegenkomen met moeilijkere bewerkingen zoals sinussen, cosinussen, logaritmen, of gekke dingen zoals eX (Wie komt deze functies tegen??? Ontzettend veel mensen eigenlijk, wegenbouwers, landmeters, economen, ontwerpers van allerlei zoals monumenten tot zelfs rollercoasters……..)

Wel daar komt de gemakzucht van een wiskundigen naar boven. We vervangen deze moeilijkere functies gewoon in diegene waar we graag en makkelijk mee kunnen werken… de simpele veeltermen. Het addertje onder het gras is wel dat deze veeltermen een oneindig hoge graad hebben… (Je moet ze natuurlijk niet oneindig lang opschrijven, je stop gewoon tot je tevreden bent met de nauwkeurigheid. Een beetje zoals bij het getal π, daar blijf je ook niet steeds alle getallen na de komma opschrijven!) Bijvoorbeeld:

Sin (x) = x – (1/6) x³ + (1/120) x5 – (1/5040) x7 + …
Cos (x) = 1 – (1/2) x² + (1/24) x4 – (1/720) x8 + …
ex =  1 + x + (1/2) x² + (1/6) x³ + (1/24) x4 +…

Hoe je dit vervangt zal je leren (of misschien ken je dit reeds) wanneer je leert over Taylor reeksen. Op het eerste zicht lijkt het een beetje willekeurig en moeilijk maar eigenlijk is het slechts 1 regel die je leert hoe je een functie in zulk oneindige veelterm te veranderen.
Velen griezelen bij woorden zoals sinus en logaritmen en voor hen is het dus een troost dat je deze moeilijke functies kan vereenvoudigen in die eenvoudige veeltermen waar je al snel eenvoudig mee kan rekenen omdat deze slechts bestaan uit basisbewerkingen (+, x en machten).

DAAROM WISKUNDE

Giedts T.

Advertisements

Leave a comment

Filed under Info voor leerkrachten en scholen, Toepassingen voor elke dag, Wiskunde vs. Misdaad, wiskundige carrière

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s